Dave Heath photo exhibition at the National Gallery

Dave Heath, New York City, 1962. The Nelson-Atkins Museum of Art, Kansas City, Missouri. Gift of the Hall Family Foundation, 2011.67.32. © Howard Greenberg Gallery and Stephen Bulger Gallery.



The National Gallery of Canada in Ottawa is currently exhibiting the work of American street photographer, Dave Heath (1931–2016).

The show, entitled Multitude, Solitude: The Photographs of Dave Heath is curated by Keith Davis from the Nelson-Atkins Museum of Art in Kansas City, Missouri.

Mr. Davis came to Ottawa to give a talk about the show and the importance of Mr. Heath’s photographs.

Mr. Heath had a difficult childhood and it is reflected in his photographs. He was abandoned by his parents at a young age and bounced around foster homes and orphanages in Philadelphia.

He became interested in photography after being inspired by photo essays in LIFE magazine. He taught himself how to use a camera and work in a darkroom. He made several books of his photographs by hand.

“Dave Heath didn’t do spot news, he did timeless news,” said Mr. Davis. “He was a psychological photographer, not a social photographer. He attempts to record what’s going on in someone’s head.”

The exhibition contains black and white photographs Mr. Heath took as a young man in Philadelphia, Chicago and New York.

Mr. Heath was drafted into the US Army and served in Korea. While there, he took many portraits of fellow soldiers in Korea and the despair of war is evident in these photographs.

A large part of the exhibition is devoted to Mr. Heath’s acclaimed photo book – A Dialogue With Solitude, which contains themes of loneliness and alienation.

In 1970, he moved to Toronto and taught photography at Ryerson University. He continued to take street photographs and some of his colour prints and slide shows are in the last room of the exhibition. 

Multitude, Solitude: The Photographs of Dave Heath, continues at the National Gallery until September 2, 2019.


Innovative podcasts and the future of journalism

Olga Ruiz: Create something unique. 

PAMPLONA, Spain -- In August of 2013, Olga Ruiz returned from a refreshing summer vacation ready to start her 16th season on the COPE radio network in Barcelona.

But on her arrival, the managers told her and her team that they were being fired. "The best period in my professional life began the moment they fired me," she told me. "They gave me a second life in journalism."

Two weeks later, she invited her old team and some other journalists to her home for dinner. They decided to launch a new radio organization with long-form stories of up to 30 minutes on topics ignored or treated superficially by mainstream media. They would devote obsessive attention to the quality of 

A rise of 18°C or 32.4°F by 2026?

A catastrophe of unimaginable proportions is unfolding. Life is disappearing from Earth and all life could be gone within one decade. Study after study is showing the size of the threat, yet many people seem out to hide what we're facing.

In the Arctic alone, four tipping points look set to be crossed within a few years:

  1. Loss of the Arctic sea ice's ability to act as a buffer to absorb incoming ocean heat
  2. Loss of Arctic sea ice's ability to reflect sunlight back into space (albedo)
  3. Destabilization of sediments at the seafloor of the Arctic Ocean 
  4. Permafrost melt

Crossing these tipping points triggers a number of feedbacks that kick in at accelerating speed, including even more absorption of heat by the Arctic Ocean, further changes to the Jet Stream resulting in even more extreme weather, seafloor methane release, water vapor feedback and emissions from land such as CH₄ (methane), N₂O (nitrous oxide) and NO (nitrogen oxide), due to permafrost melt, storms and forest fires. Temperatures also threaten to rise strongly over the next few years as sulfate cooling falls away while more black carbon and brown carbon gets emitted as more wood gets burned and more forest fires occur.

recent study points at yet another tipping point, i.e. the disappearance of marine stratus clouds, which could result in a global temperature rise of eight degrees Celsius (8°C or 14.4°F). In the model used in the study, the tipping point starts to occur at 1,200 ppm CO₂e, i.e. a stack of greenhouse gases including CH₄, N₂O, CO₂ and H₂O, and changes in clouds resulted in global surface warming of 8°C at 1,300 ppm CO₂e, as stratocumulus decks did break up into cumulus clouds and evaporation strengthened, and average longwave cooling at the level of the cloud tops dropped to less than 10% of what it was in the presence of stratocumulus decks.

This 8°C rise would come on top of the warming that would already have occurred due to other warming elements, resulting in a total rise of as 18°C or 32.4°F from preindustrial, as pictured on the right and below.


What would it take to reach 1200 ppm CO₂e? The IPCC's AR4 contains a scenario of 1,200 ppm CO₂e getting reached with a corresponding temperature rise of between ~5°C and ~10°C above preindustrial. NOAA's figures for greenhouse gases add up to a current level of 500 ppm CO₂e. NOAA's figure for methane's GWP is too low, especially when considering a rise within a decade. When using this 500 ppm CO₂e, it would take 700 ppm to reach 1,200 ppm, and if 1 ppm equals 7.81 Gt of CO₂, then 700 ppm equals 5467 Gt of CO₂, which may seem a lot, but at a GWP for methane of 130 (10-year horizon) it could be reached instantly with a burst of methane of some 42 Gt, i.e. less than Natalia Shakhova's warning that 50 Gt of methane is ready for release at any time. In above image, further warming elements are included, in addition to methane and CO₂ and it takes until the year 2026.

As an earlier study points out, life on Earth will already have disappeared with a 5°C rise (see box on the right).

How precious life is

It took a long time for life to evolve on Earth. At first, hardly any species could live on land, as there was no ozone layer to protect them from UV radiation. Also, there was no oxygen in the air to breathe. Life formed some 3 billion years ago and bacteria first developed the ability to decompose carbon dioxide (and produce oxygen) some 2.3  billion years ago.

Then, worm-like creatures started to multiply strongly, using more and more oxygen and producing more and more carbon dioxide. Eventually, this resulted in a sharp fall in oxygen levels, leading to extinction of these species. This first mass extinction was followed by a spike in oxygen as both the species in the oceans and plants on land continued to produce oxygen, while these first animals went extinct. 

Temperature changes dominate in subsequent mass extinctions, and each time it took life a long time to recover. We've now entered the Sixth Mass Extinction, as oxygen levels are falling, oceans are acidifying and species are going extinct at accelerating rates. A 2013 study calculated that species are facing warming that occurs 10,000 x faster than their natural ability to adapt.

A rise of 18°C or 32.4°F by 2026?

The speed at which temperatures and greenhouse gas levels are now jointly rising is so large and so unprecedented in Earth's history that many doubt that there will be any life left on Earth by 2026.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

Can humanity change its course? 

Given that humanity appears to be on a course to omnicidal destruction, what position can we best take in response? In the light of the dire situation, dramatic reduction in pollution is needed, as well as further action. Indeed, the Paris Agreement constitutes a global commitment to comprehensive and effective action. The Climate Plan calls for multiple parallel lines of action (the green lines on the image below).

The green lines of action each need to be implemented in parallel, i.e. no line of action should wait for another, nor should action on one line be used as an excuse to delay action on another line. Where lines of action are grouped together in three parts, numbers merely show relationships with the kinds of warming pictured at the top of the image.

While implementation of some of these lines of action requires U.N. supervision, the Climate Plan prefers local implementation, with communities deciding what works best locally, provided a community does take sufficient action to achieve the necessary dramatic reductions in each type of pollution. Examples of implementation of some of these lines of action are depicted in the image below, showing examples of how progress can be achieved through local feebates.


Where progress is lacking, swift escalation is recommended as follows:

1. Where a local community fails to make progress, state (or provincial) fees are imposed in that locality.
2. Where a state fails to make progress, national fees are imposed in the state.
3. Where a nation fails to make progress, other nations impose fees on imports from and export to that nation with revenues used to fund clean development in the other nations.

Warm air and water moving toward the Arctic Ocean

The need for action such as marine cloud brightening is illustrated by the following two images. The image below shows that, despite the presence of large amounts of meltwater off the North American coast, sea surface temperatures on March 2, 2019, were as much as 13.8°C or 24.8°F warmer than during 1981-2011, indicating how much more ocean heat is now carried to the Arctic Ocean along the Gulf Stream.


How is it possible for anomalies to get this high? As the Arctic is warming up faster than the rest of the world, the Jet Stream is becoming more wavy. A more wavy Jet Stream enables more cold air to move out of the Arctic. As a result, cold Arctic air can descend deep into the North American continent. At the same time, a more wavy Jet Stream enables more warm air and water to move into the Arctic. This is illustrated by the February 24, 2019, combination image that shows temperature on the left and the Jet Stream on the right.


As oceans get warmer, the temperature difference between land and oceans also increases in Winter. This larger temperature difference results in stronger winds that can carry more warm, moist air north in the North Atlantic. These winds can also speed up the amount of heat carried by the Gulf Stream toward the Arctic Ocean, with the threat that a large influx of warm, salty water will destabilize sediments at the seafloor of the Arctic Ocean and trigger eruption of huge amounts of methane. 

In conclusion, the situation is dire and calls for comprehensive and effective action, as described at the actionpolicies and feebates pages at the Climate Plan.


logspot.com/p/extinction.html


" height="776" src="https://img1.blogblog.com/img/video_object.png" width="500" style="cursor: move; background-color: rgb(178, 178, 178);">